
ELLIOTT

Volume 2: PROGRAMMING INFORMATION

Part 6: APPLIED PROGRAMMING

Section 3% ESP 900 (ALGOL SIMULATION PROCEDURES)

Contents

Page

Chapter 1: INTRODUCTION 2.2 «6 2s oe 00 60 ce oe fe 1

Chapter 2: COMPUTER CONFIGURATION 2

Chapter 3: STRUCTURE OF THE SIMULATION MODEL 3

Chapter 4: STRUCTURE OF THE SIMULATION PROGRAM 5

Chapter 5: PARAMETERS 7

Chapter 6: EXAMPLE 1 a se ae eter mres cite exe es et 8

Chapter 7: THE RANDOM NUMBER PROCEDURES il

7.1 Double length Random Integers ae I

7.2 "INTEGER" "PROCEDURE" BASERANDOM (U); 2

7.3 "REAL" 'PROCEDURE" SETRANDOM; .. 12

Chapter 8: THE RANDOM SAMPLING PROCEDURES

8.1 “INTEGER' "PROCEDURE" RANDOM

(A,B,U); .. 13

8.2 "REAL" "PROCEDURE" NEGEXP (MEAN, ‘U); 13

8.3 "REAL" "PROCEDURE" NORMAL (MEAN,

SIGMA, U); ; .- 13

8.4 "REAL" "PROCEDURE" FASTNORMAL

(MEAN, SIGMA, U); .. .e ee ee ee ee 13

Copyright Marconi-Elliott Computer Systems Ltd., i

June, 1969 (Issue 2)

Printed at The Broadwater Press, Welwyn Garden City, Hertfordshire

900.

2.6.3

Chapter 9;

Chapter 10:

Chapter 11:

Chapter 12:

Chapter 13:

Chapter 14:

Chapter 15:

ii

(Issue 2)

8.5 UREAL" "PROCEDURE' LOGNORMAL

(MEAN, SIGMA, U);.. .
8.6 "INTEGER" "PROCEDURE" "POISSON

(MEAN, U); .. 0.2 ce ee ee ee ee
8.7 "INTEGER" "PROCEDURE" BINOMIAL

(N, P, U); a ee a ee

8.8 "INTEGER" 'PROCEDURE" PASCAL

(M, P, U); wie em =e OR BR) Be + RS RM eR

8.9 "INTEGER" "PROCEDURE" GEOMETRIC

(P, U);
(10 "REAL" "PROCEDURE" ERLANG (A, K, U);
.11. "INTEGER" "PROCEDURE" HYPERGEOM

(TN, NS, P, U);

EXAMPLE 2

THE HISTOGRAM PROCEDURES

oe

©

10.1 Histogram Structure i we Se .s

10.2. "PROCEDURE" HSTSET (A, N, L, W);

10.3. 'PROCEDURE' HSTPUT (A, X); ‘

10.4 'PROCEDURE" HSTPRINT (A, DEVOUT);

10.5 "PROCEDURE" HSTTRUE (A, M, V);

10.6 "PROCEDURE" HSTGROUP (A) M, 4 Vd;

10.7 Arithmetic Operations ee oe

10.8 "PROCEDURE" HSTIN (A); «. «-

10.9 "PROCEDURE" HSTOUT (A);

10.10 "INTEGER" "PROCEDURE" HSTSAMP (A, U);

SUMMARY OF PROCEDURES

THE GLOBAL VARIABLE 'TIME'

OPERATING INSTRUCTIONS

13.1 Redundant Procedures «+ «oe

ERROR MESSAGES

RESTRICTION

Page

14

14

14

15

15

16

16

17

19
20
21

21
22
22

23
23
23

24

25

27

29

31

32

Chapter 1: INTRODUCTION

The Elliott Simulator Package (ESP) is a set of ALGOL

procedures designed to aid the writing of simulation programs.

This paper describes a version of ESP for use on the Elliott

900 data processing system.

The behaviour of complex systems, involving many interrelated

processes, cannot usually be studied by normal mathematical techniques, but

is most conveniently described by means of a model. The model once set up

miay be exposed to random demands and statistics collected to describe its

response, This is the technique of simulation. The manipulation of the model

usually involves only simple steps, but a great many steps are required if the

results are to be statistically significant. Thus a numerical model, which

can be manipulated by a computer, is usually devised.

One might question the need for special programming systems,

such as ESP, for simulation studies, when powerful general-purpose systems

such as ALGOL and FORTRAN are available. The answer is that the central

difficulty of the problem is the control of the sequence in which the inter-

dependant activities forming the model occur. If one attempts to write a

simulation program using only a general-purpose language, one rapidly

becomes enmeshed in the complexities of this sequencing control, which is not

of great interest but nevertheless affords surprisingly fertile ground for minor

errors, Moreover, mistakes here are liable to produce obscure effects, and

are correspondingly difficult to eradicate.

The major task of a simulator programming system, then, is

to deal with this sequencing problem. In addition, the user will need to program

certain parts of his problem himself, and should be allowed to use some

problem-orientated language. In the case of ESP this language is ALGOL.

Finally, there are procedures which may be required by almost every user,

such as random number routines, random sampling procedures and histogram

procedures, and these too are built into the system.

1

(Issue 2)

2.6.3

Chapter 2: COMPUTER CONFIGURATION

ESP 900 is designed for an Elliott 900, data processing system

with:

(a) At least 8, 192 word of Core store

(b) 1 Paper Tape Reader

(c) 1 Paper Tape Punch

An On-line teleprinter would be an advantage but not an

absolute necessity.

A facility is included whereby the user may take advantage

of an extra core store unit.

It is suggested that to obtain the maximum amount of space for

the user's program it would be advisable to compile only those procedures

which are required for the particular simulation. Further saving in store space

may be achieved by the user performing a library scan (Volume 2.3.2 chapter

35).

N. B. SQRT is used by some of the ESP procedures.

2

(Issue 2)

900
2.6. 3.

Chapter 3: STRUCTURE OF THE SIMULATION MODEL

The system, of necessity, imposes certain constraints

because of its form as a set of prefabricated units. Thus there is a preferred

type of model, but the type is general enough to embrace almost all systems

of interest and is self-explanatory enough to be easily written, explained and

understood by others.

The system to be simulated may be regarded as a set of

''actions'' which manipulate a set of "objects''. The objects might be ships

waiting to be loaded by cranes, or the cargoes with which they depart. The

actions in this case would be the arrival and departure of ships, and the

beginnings and ends of loadings. Alternatively the objects may be cars being

manufactured on a production line; and the actions the arrival and departure

of the cars at certain points in the line and the starting and finishing of the

jobs to be performed at those points. In the model, all objects are

represented by numbers - or possibly by lists of numbers - and all actions

are represented by units or blocks of program which manipulate the numbers.

There are two types of actions. There are those which are

pre-ordained to occur at a certain time or after a set interval, which are

known as "delayed actions", and there are actions which will occur as soon

as some favourable combination of objects appears, and these are termed

“conditional actions".

It is, of course, quite likely that hybrid actions could occur

which depend on several conditions and also on time. Fortunately, hybrid

actions can always be separated into a delayed action and a conditional

action by making one of the conditions of the conditional action the fact that

the delayed action has occurred and been noticed.

These concepts may be illustrated by an example. Let us

consider empty delivery trucks arriving ata warehouse to be loaded. There

are several loading bays, and a truck may be loaded at any bay. The objects

of interest are free loading bays, waiting trucks and loaded trucks.

The actions are:-

(1) Whenever there is a free loading bay,

and a waiting empty truck then the

loading bay becomes busy and the truck

disappears.

(2) After some time the loading bay becomes

free and a loaded truck appears.

The first action is a conditional action which occurs whenever

the stated objects are present. The second action is a delayed action which

occurs at a pre-ordained time. This time was pre-set by action (1) when

the loading commenced. The process by which a future occurrence of a

delayed action is arranged will be referred to as "calling" that action.

3

(Issue 2)

900
2.6.3

It is the task of ESP to enter the various sections of the

program representing actions in the correct sequence, and at the beginning

of each adjust the value of a variable representing time. Any section

entered may call any other section or itself. Provision is made for this

and the subsequent behaviour of the sequencing routine will be modified in

response to such calls.

4
(Issue 2)

900
2.6.3

Chapter 4: STRUCTURE OF THE SIMULATION PROGRAM

The program written by the user to perform his simulation

will have a structure closely related to that of the model described in the

previous section. The program will consist of several sections or blocks,

each devoted to one action. It will be preceded by declarations of the

identifiers and arrays needed to represent the objects to be manipulated,

and to accumulate and record the results of the simulation. It must also

have a block which sets up the initial state of the model. This block will

normally be used only once, at the beginning of the simulation. The whole

program is then embedded in an outer block containing the standard pro-

cedures of ESP so that these may be available anywhere within the

program.

The various action blocks must be obeyed in proper sequence.

Hence the routines of ESP first examine a list of actions which have been

called but not yet employed, select the earliest of these and enter it. When

this action has been completed, the remaining called actions are examined,

and any which are called for at the same time as the one just performed are

also entered. After this the conditional actions are examined, and any

possible ones performed. The cycle is then repeated.

Since only the writer of the simulation can decide what tests

are needed in the conditional actions, these tests are his responsibility.

The whole set of conditional actions is grouped into one block. Within this

block each action is represented by a conditional statement, e.g. in our

example of the loading bays and trucks, we may have a conditional state-

ment meaning: if a loading bay is free and there is an empty truck waiting,

then the loading bay becomes busy and the number of empty trucks waiting

is reduced by one. It is possible to group all the conditional actions to-

gether, because they must all be examined at the same time. There is

thus no need to break into the middle of the group.

To enable ESP to enter the sections in the appropriate

sequence, the starting point of each section is given a label, All these

labels must be declared in a switch list, with the label corresponding to

the conditional actions section first, followed by the labels corresponding

to the delayed activities. The switch itself must have a name and for this

description we shall use the name ACT. Thus if there are three delayed

actions labelled, FIRST, SECOND and THIRD and the conditional happenings

are labelled MAYBE, the switch declaration will be

"SWITCH" ACT: = MAYBE, FIRST, SECOND, THIRD;

Calls for actions are made through a procedure named CALL

in ESP. This procedure has two parameters HAP and T, and is associated

with the switch ACT as follows. The parameter HAP specifies the delayed

action which is to be called and this is the (HAP)th delayed action in the

5

(Issue 2)

900

2.6.3

switch list, i.e. the (HAP + 1)th label. The conditional actions are never

called but are entered automatically when needed. Thus in the list above

CALL (2, T) is a call for the delayed action labelled SECOND. The para-

meter T specifies the time which is to elapse before the action actually

occurs. Thus, if we want action FIRST to occur 1 time unit after the start

of the simulation, and action THIRD to occur 1000 time units after the start,

we write at the beginning of the program:

CALL (1, 1);
CALL (3, 1000);

Then if action SECOND is to occur 3 time units after action

FIRST and action FIRST is to occur again every 6 time units, we write in

the block which does everything concerned with action FIRST:

CALL (2, 3);
CALL (1, 6);

When a section of program has been performed, it is necessary

to progress to the section representing the next action to be performed

i.e. to jump to one of the labels in the switch ACT. ESP must decide which

action is now required, and a procedure NEXT is provided for this purpose.

This is an integer procedure and is used to select one of the labels from the

switch ACT. Each section of the simulation program must end with the

statement:

"GOTO" ACT [NEXT];

This activates the procedure NEXT, which scans a list

maintained inside ESP and selects the next action required. In this list, the

actions are known by the parameter HAP given to the procedure CALL, and

NEXT takes the appropriate value to cause entry to the section of program

concerned. The procedure NEXT also causes entry to the group of tests

for conditional actions. This occurs whenever a delayed action has just

been completed, and the next delayed action is due to occur at a later time.

Thus the statement 'GOTO' ACT [NEXT]; informs the

simulation program that the current action is complete and another section

is to be entered, whilst the statement CALL (HAP, T); is the means of pre-

arranging future actions.

6
(Issue 2)

900
2.6. 3

Chapter 5: PARAMETERS

It is quite likely that when an activity is called, certain data

is available which will be useful when the action is performed. For example,

suppose that the loading bays in our example are to be distinguishable,

i.e. when a loading bay becomes busy we know which one it is, and similarly

when it becomes free later we wish to recognise it as the same bay.

We might do this by having a large number of actions like

"loading bay 1 becomes free", 'loading bay 2 becomes free'' and so on, but

this is rather clumsy. Instead we prefer a single action "loading bay i

becomes free'' with a parameter i.

For the manipulation of parameters, two integer arrays are

provided, declared within ESP. These are SEND [0:10] and GET [0:10].

Parameters to be transmitted are placed in SEND before calling fora

delayed action. When the action occurs, it will find these same parameters

in GET. The element SEND [0] is used for a special purpose - it states

how many parameters are to be transmitted. If we wish to save certain

information for use in a later block, for example a loading bay's number i,

or some information about a truck, such as type of truck, goods to be

loaded, driver to be allocated etc., we set this information in the array

SEND before we set in motion the procedure CALL. We first set the number

of parameters n, I<n<l0, in SEND [0], and the parameters themselves in

SEND [1] to SEND[n]. Procedure CALL will then store these parameters

within its list of actions to be done, and reset SEND [O] to zero. If there

are no parameters to be transmitted, it is unnecessary to clear SEND [0]

before CALL. When an action having associated parameters is about to be

entered through ''GOTO" ACT [NEXT]; the parameters are automatically

placed in the array GET and are available for use during the action. If the

number of parameters, n, is less than 10, then GET [n+ 1] to GET [10]

are undefined. nis held in GET [ol].

The ESP system makes it possible for several calls for

future actions to exist concurrently. Thus several loadings may be in pro-

gress at any time with an associated call for "loading bay becomes free".

The various times and parameters i are manipulated by ESP in such a way

that entry occurs to the action at the appropriate times and at each entry the

correct associated parameter i will be present. Thus the calls do not inter-

fere with one another in any way.

7
(Issue 2)

900

2.6.3

Chapter 6: EXAMPLE 1

We can now consider an example program which uses the

basic ideas of ESP introduced so far. Only the bare essentials of the

simulation are considered and trivial statistics will be collected.

We will simulate a warehouse with four loading bays. Trucks

are loaded for a period of 60 hours per week. They arrive ata rate of one

every twenty minutes. Any truck may be loaded at any loading bay. It

takes one hour to load a truck. We wish to find the number of trucks loaded

at each bay during a 60 hour working week, assuming that the bays are

numbered from one to four, and that if more than one bay is free then the

lowest numbered bay accepts the next empty truck for loading.

The program is:

"BEGIN" "BOOLEAN" open;

"COMMENT" open is true for 3600 minutes, then false;

"INTEGER" truckswaiting;

"COMMENT" this is a count of the empty trucks waiting;

"BOOLEAN" "ARRAY" bayfree [1 : 4];

"COMMENT" bayfree [i] is true if bay i is free;

"INTEGER" "ARRAY" loadedtrucks [1 : 4];

"COMMENT" loadedtrucks [i] is a count of the trucks loaded

by bay i;

"SWITCH" ACT: = beginload, truckarrive, finishload, shutwarehouse,

results;

"BEGIN' "INTEGER" i;

"COMMENT" this is the program entry point and this section

sets up the initial conditions of the system.

PREPARE is an ESP procedure which initialises

ESP;

PREPARE;

open := ' TRUE"; truckswaiting:=0;

"POR! i:sl1 "STEP" 1 "UNTIL" 4 "DO"

"BEGIN" bayfreeLi]:= 'TRUE";

loaded trucks |i |:=0
"END";

CALL (1, 10);

'\COMMENT'" the first empty truck arrives in 10 minutes;

CALL (3, 3600);

'COMMENT'"! the warehouse closes in 3600 minutes;

CALL (4, 4000);

"COMMENT" output results after 4000 minutes, i.e. when all

other activity has ceased;

8
(Issue 2)

900

2.6. 3

"GOTO" ACT [NEXT]

"END" This completes the setting up of the initial state. The

procedure NEXT will cause entry to the appropriate

section of program. On this occasion, this will be the

section labelled 'truckarrive', in response to CALL

(1, 10);

truckarrive: 'BEGIN" ''COMMENT" this section simulates

the arrival of an empty truck. It also calls itself

so that a further truck will arive in due course.

The process stops when 'open' becomes false;

"TF" open ''THEN" "BEGIN"

truckswaiting:=truckswaiting +1;

CALL (1, 20)
"END":

"GOTO" ACT [NEXT]
"END" on this first occasion, NEXT will select the conditional action

'beginload';

beginload: "BEGIN" "COMMENT" this is the set of conditional

actions which starts loading a truck whenever a

loading bay and an empty truck are both available.

"INTEGER" i;

"POR" i:=1 "STEP" 1 "UNTIL" 4 "DO"

"IF" bayfree [i]''AND" truckswaiting ''NE" 0 ''THEN"

"BEGIN" bayfree [i] :=''FALSE";
truckswaiting:= truckswaiting - 1;

"COMMENT" the loading bay is now busy and we must

make it become free again in 1 hour;

SEND [0]:=1;SEND [1] :=i;
CALL (2, 60);

''COMMENT" we need to transmit the loading bay's

number i, to enable us to make the

correct loading bay become free;

loaded trucks [i]:= loaded trucks [i] + 1
"END";

"GOTO" ACT [NEXT]

"END" the loading thus started will be terminated by the action

labelled 'finishload';

finishload: bayfree [GET [1]]:= "TRUE";

"COMMENT" this action frees the bay after the loading

started in 'beginload' has finished. The

bay's number iis in GET []], corresponding

to the SEND [i] of the action 'beginload';

"GOTO" ACT [NEXT];

9
(Issue 2)

900

2.6.3

shutwarehouse: open:= "FALSE";
"COMMENT" this action prevents the arrival of further

empty trucks since 'open' is tested by the

action 'truckarrive';

"GOTO" ACT [NEXT];
results: 'BEGIN"' "INTEGER" i;

"FOR" i:=l "STEP" 1 "UNTIL 4 "DO"
"PRINT" loadedtrucks [i];

STOP;
"END" there will not be any more called events at

this stage, ESP will output a message to this

effect and stop.
"END" of example program which must be followed by
"END!

"END" to close the surrounding blocks containing ESP

and its procedures;

As one might expect the results were:

Trucks loaded at bay 1 = 60
Trucks loaded at bay 2 = 60

Trucks loaded at bay 3 = 60
Trucks loaded at bay 4 = 0

10
(Issue 2)

900

2.6.3

Chapter 7: THE RANDOM NUMBER PROCEDURES

Example 1 is very simple and in many ways unrealistic. We

said that empty trucks arrived once every twenty minutes, while in real life

it is more likely that they arrived at varying intervals, the average length

of which was twenty minutes. Equally, the loading time is more likely to

average one hour. Thus we would prefer to have trucks arriving at random

intervals with a mean time of twenty minutes. We would also like to have

random numbers available for other purposes and to form separate streams

of random numbers so that different parts of the program may be independent.

Several random number procedures are provided in ESP.

The process to generate a stream of numbers which may be

regarded as random is described by A.R. Edmonds in the Computer Journal,

Vol. 2, No.4, Page 181 onwards. The random numbers Uy Us reeeees

are generated by a series defined by

u.+1=ku.. modulo m
n n

The formula that ESP uses is

au +1=13!3, uy modulo (27*-1) -(1)
n n.

. 31
i.e. m = 2° -1 = 2147483647

13
and k= 13 modulo m =.455 470 314

In (1) the u,, form a periodic sequence of numbers with period

231 .2. Any positive integer ''a'' may be used as the starting point of the

sequence provided a<m. This is Lehmer's method.

We may conveniently generate several random number streams

using (1) provided that the various starting values ''a'' are taken from widely

separated points of the complete periodic sequence.

Now if uj, =a

then u = ka. modulo m

i. e. u, = ca. modulo m

where c = k”. modulo m.

Thus, for large n, the series a,, a,.++++++. defined below

will be a good set of starting values for the various random number streams.

ase 28 747 135

a, + 1 =ca,. modulo m -(2)

11

(Issue 2)

900
2.6.3

If n= 22° then c = 1 071 581 425. In this case 64 values of ''a'' from widely

separated parts of the cycle will be given and a random number stream

starting from any one of these will give 225 values of un, before overlapping

the beginning of the next stream.

7.1 Double length Random Integers

In 900 Elliott Algol a variable declared to be of type

real is allocated two locations. In this version of ESP the random number

routines use these two locations to hold double length integers. This is be-

cause the random number generator (1) is ideally suited to a 31 bit word

whereas the 900 data processing systems have 18 bit words.

Note, then, that any variables declared by the user,

which are used as double length random integers, must be declared to be of

type real.

7.2 "INTEGER" "PROCEDURE" BASERANDOM (VU);

This procedure produces a series of numbers on

successive entries such that all numbers between 1 and 231 _2 are pro-

duced only once in the cycle and are equally likely to occur.

U, a real variable’ used to hold 31 bits random integers,

is replaced by the next term in the sequence u_. BASERANDOM itself

takes a positive integer value corresponding to the top 17 bits of the new

random integer.

Note: A real random number R in the range 0 to 1.0 may

be obtained by the statement:

R: = BASERANDOM (U)/131071. 0;

7.3 "REAL" 'PROCEDURE' SETRANDOM;

This procedure is used to initialise any number of

random number streams for use as actual parameters in BASERANDOM

or the Random Sampling Procedures (ref. Chapter 8). These parameters

must be declared to be of type real at the beginning of the user's program.

The starting value of SETRANDOM is set by the procedure PREPARE, and

subsequent calls will produce in succession the numbers a,, a2, .++.+eee85

defined by (2) and these can then be assigned to the actual parameters.

12

(Issue 2)

900

2.6.3

Chapter 8: THE RANDOM SAMPLING PROCEDURES

All the random sampling procedures use one or more terms

from the sequence u_ (ref. Chapter 7). They all require a parameter, U,

the name of a real variable (i.e. double length integer, ref. Chapter 7. 1)

which is used to contain successive terms of the sequence u_, and the value

of which is changed each time the procedure is obeyed. a

In general, random samples from continuous distributions are

of type real while those from discrete distributions are of type integer.

8.1 "INTEGER" "PROCEDURE" RANDOM (A, B, U);

The result of this procedure is a random integer X

such that AC X ZB, i.e. a Rectangular distribution. The procedure obtains

a random number R in the range (0, 1) via BASERANDOM and evaluates X by

X: = ENTIER (R* (B - At1))+ A

A and B are of type integer.

8.2 "REAL" ''PROCEDURE" NEGEXP (MEAN, U);

The resultant random number X is selected from the

Negative Exponential distribution having mean MEAN (type real). The

procedure obtains a random number R in the range (0, 1) via BASERANDOM

and evaluates X by

X: = - MEAN * LN(R)

8.3 “REAL' 'PROCEDURE" NORMAL

(MEAN, SIGMA, U);

The result of this procedure is a Normal random

variable distributed with mean MEAN and standard deviation SIGMA. The

procedure sums 12 random numbers in the range (0, 1) generated via

BASERANDOM, and obtains X from
12

X; = MEAN + SIGMA*[(= R) -6]

MEAN and SIGMA are of type real.

The procedure may be adapted to use less than 12

random numbers, but although such a version would be faster the result

is liable to be biased. However, a procedure FASTNORMAL is provided.

8.4 "REAL' "PROCEDURE" FASTNORMAL

(MEAN, SIGMA, U);

This is similar to 8.3 but only 5 numbers are summed.
5

X: = MEAN + §3/5 * SIGMA * [2% (= R) -5]

13

(Issue 2)

900
2.6.3

8.5 "REAL" 'PROCEDURE' LOGNORMAL

(MEAN, SIGMA, U);

The result X of this procedure is a random variable

selected from a Lognormal distribution with mean MEAN and standard

deviation SIGMA. MEAN and SIGMA are of type real.

The procedure sums 12 random numbers in the range

(0, 1) generated via BASERANDOM, and evaluates X from

X: = EXP (MEAN + SIGMA * [(z R) -6])

8.6 "INTEGER" 'PROCEDURE" POISSON
(MEAN, U);

The resultant random integer X is selected from a

Poisson distribution having mean and variance MEAN (type real). The

procedure obtains a random number R in the range (0, 1) via BASERANDOM

and evaluates X as follows:

Let m = MEAN

If exp (-m)> R, thenX = 0

If exp (-m) (l+m)2> R> exp (-m), then X= 1

If exp (-m) (l1tmim”)>R >exp (-m)(l+m), then X = 2

Note: exp (-m) (1¢mtm? +m +seeee)
~ 2! 3!

= exp (-m). exp (m) = 1

8.7 "INTEGER" "PROCEDURE" BINOMIAL (N, P, U);

The resultant random integer X is selected froma

Binomial distribution. P is the probability of a ''success" and N is the

number of "attempts". The proceudre obtains a random number R in the

range (0,1) via BASERANDOM and evaluates X as follows:

Let P=1-Q

tt QN >R, then X = 0

raN<r< QnN+npQh-}, nce

1 ON + npQN-1<R« oN + NPQN- * #N(e1) PY Qn-4

etc., then X = 2

14
(Issue 2)

Note: QN + npQN:! + N(N-1) p* an + oli saeee +P° =(QHP) =1.
2!

N is integer, Pis real.

8.8 "INTEGER" 'PROCEDURE" PASCAL (M, P, U);

If P is the probability of a ''success'' then the resultant

random integer X is selected from a pascal distribution and represents the

number of ''attempts'’ necessary to obtain M ''successes''. The procedure

obtains a random number R in the range (0, 1) via BASERANDOM and

evaluates X as follows:

Let P=1-Q

wr PM»>R, then XK =M
M M

IfP <R<P °° (1+MQ), then X = Mtl

i PM (14MQ) <R < P™ [1+MQ+M(M#t1) Q°], then X = MH2
2! etc.,

M
Note 1: P [1+MQ+M(M+1) Q* + mS dies o x-]P

2!

Note 2; A random sample from a Geometric distribution may be obtained

by calling PASCAL with M=l. However, a more efficient

procedure GEOMETRIC is provided.

8.9 "INTEGER" "PROCEDURE" GEOMETRIC (P, U);

If P is the probability of a ''success'' then the resultant

random integer X is selected from a Geometric distribution and represents

the number of "attempts" that occur before a failure" occurs.

The procedure obtains a random number of R in the

range

(0, 1) via BASERANDOM and evaluates X as follows:

Let P=1-Q

If P >R, thenX=1

If P<R< P(1+Q), then X = 2

If P (14Q)<R <P (140407), then X = 3

2 3 etc., -]

Note: P(14#Q+Q°+Q°.......)=P(1-Q) > = 1.

15

(Issue 2)

900

2.6.3

8.10 "REAL" 'PROCEDURE" ERLANG (A, K, U);

The resultant random variable X is selected from an

Erlang distribution. A and K are two parameters defined by:

mean
A = Type real

variance -——

2

ee T integer = = e in
variance ype mucss*

The procedure obtains a series of random numbers R,

in the range (0, 1) via BASERANDOM and evaluates X from

i K X= -5 * LN (7 R,)

8.11 "INTEGER" "PROCEDURE" HYPERGEOM
(TN, NS, P, U);

The resultant random integer X is selected from a

Hypergeometric distribution. TN is the size of a population consisting of

class Il and class II elements. P is the probability of any element in the

population being class I. X will be the number of class I elements ina

sample of NS elements selected randomly from the population without

replacement.

The method is as follows:

(a) X is initially set to zero.

(b) A random number R in the range (0, 1) is

generated via BASERANDOM.

(c) If R< Pit is taken to represent a class I

element and X is increased by 1.

(d) The population size TN is decreased by 1

and the new value of P calculated.

(e) Steps (b), (c) and (d) are repeated NS times

in all.

TN and NS are integers, P is real.

16

(Issue 2)

Chapter 9:

900

2.6. 3

EXAMPLE 2

To illustrate the use of the random number procedures we

shall extend example 1. We now specify that the arrival times of empty

trucks have a negative exponential distribution with a mean of twenty minutes

and the loading time of the trucks is a random value uniformly distributed

between 40 and 80 minutes. The general structure will remain the same,

and the only blocks in our previous example which we must change are those

labelled "truckarrive' and "beginload" and the preparatory block. We also

need two more real variables, ul and u2, to be source parameters for the

random number routines.

Our Program now becomes, missing out some of the

comments which apply as before.

"BEGIN" 'BOOLEAN'" open; "INTEGER' truckswaiting;

"REAL" ul, u2;
'BOOLEAN' "ARRAY" bayfree [1 : 4];

NINTEGER" "ARRAY" loadedtrucks [1 : 4];

"SWITCH" ACT:= beginload, truckarrive, finishload,

shutwarehouse, results;

"BEGIN "INTEGER" i;

"COMMENT"! new initialising section;

PREPARE;

open:= ''TRUE"; truckswaiting:=0;

"POR" i:=l "STEP" 1 "UNTIL" 4 "DO"

"BEGIN" bayfree [i] := ''TRUE";

loadedtrucks [i] :=0

"END";
ul:= SETRANDOM; u2:= SETRANDOM;

"COMMENT' initialises two random number streams;

CALL (1, 10); CALL (3, 3600);

CALL (4, 4000);

"GOTO" ACT [NEXT]

"ND";

truckarrive: ''BEGIN' "IF" open ''THEN!"

"BEGIN" truckswaiting := truckswaiting +1;

CALL (1, NEGEXP (20, ul);

''COMMENT'"! we now simulate the random

arrival of an empty truck;

"END";

"GOTO" ACT [NEXT]

"END";

17
(Issue 2)

900
2.6.3

beginload: 'BEGIN' "INTEGER" i;

"ROR! i:=1) "STEP" 1 "UNTIL" 4 'DO"

Tet bayfree[i]'"'AND" truckswaiting
UNE! (0) UTHEN

"BEGIN" bayfree[i]:= 'FALSE";
truckswaiting:=truckswaiting -1;

SEND [0]:=1; SEND [1] :=i;

CALL (2, RANDOM (40, 80, u2);

"'COMMENT'"' we thus make the loading time

of random length;

loadedtrucks [i] := loadedtrucks [i] + 1

"END";

"GOTO" ACT [NEXT]

"NEND'";

finishload: bayfree [GET [1]] := "TRUE";

"GOTO!" ACT [NEXT];

shutwarehouse: open:= ''FALSE";
"GOTO" ACT [NEXT];

results: ''BEGIN"' "INTEGER" i;

"POR" i:sl "STEP" 1 "UNTIL" 4 'DO"

"PRINT" loadedtrucks [i];
STOP

NREND!"!

"END" user's program

"NeND!!

"END" ESP;

The results are as follows:

Trucks loaded at bay 1 = 49

Trucks loaded at bay 2 = 49

Trucks loaded at bay 3 = 44
Trucks loaded at bay 4 = 36

18

(Issue 2)

900
2. 6. 3

Chapter 10: THE HISTOGRAM PROCEDURES

Facilities are provided for accumulating histograms, for

performing various operations on them and for sampling from distributions

of observed data.

A histogram consists of a set of numbers, each number being

the frequency of occurrence of a value of a variate in some particular

interval. Histograms used with ESP may comprise any number of cells;

the cells being adjacent intervals of equal size. The interval size, or cell

width, must be integer and the cell boundaries are regarded as lying between

two successive integers. Only integer values are allowed so that there is

no doubt as to the correct cell in which a score is to be made.

10.1 Histogram Structure

Each histogram occupies a one-dimensional integer

array whose lower bound is always -7. Most of the array elements are

used to store frequency counts for particular cells. Others, which are in

the same position for every histogram, store the parameters of the

histogram i.e. number of cells, cell width, etc. In addition, frequency

counts are kept for values outside the range of the cells, one for those values

over the upper limit and another for those below the lower limit. Running

totals, } x and Sx“, are kept so that the true mean and variance may be

computed, and a count is kept of the total number of observations.

For a histogram of N cells, an array of N+ 8

elements is required with lower subscript bound -7 and upper subscript

bound N.

The N + 8 elements are used as follows:

19
(Issue 2)

900
2.6.3

Subscript Use

- 7 Number of cells, 'N

~ 6 Lower bound of cell 1,:L Parameters

- 5 Cell width, : W
oN

-4 Number of observations, n | |
Running |

-3 Sum of values of observations, x unning |
2 totals

- 2 Sum of squares of values, dx

- 1 Frequency count "UNDER"

0 Frequency count cell 1

1 Frequency count cell 2

2 Frequency count cell 3

|

|

|

N-1 Frequency count cell N

N Frequency count "OVER"

|

10.2. "PROCEDURE" HSTSET (A, N, L, W);

The storage area for a histogram is reserved by

declaring an integer array with the appropriate subscript bounds and then using

the procedure

HSTSET (A, N, L, W);

where N, L, W are defined above, and A is the name of the histogram array.

For example, "INTEGER" 'ARRAY' EXAMPLE [-7:4];

HSTSET (EXAMPLE, 4,, 1, 3);

will set up an array called EXAMPLE with cells:-

20

(Issue 2)

900

2.6.3

"UNDER" 0 and below

cell 1 1 to 3

cell 2 4to6

cell 3 7to9

cell 4 10 to 12

"OVER" 13 and above

The upper subscript bound may be greater than N; in which case the extra
elements are not disturbed. The procedure then stores N, Land W in their

appropriate positions, and clears the remainder of the histogram.

10.3. "PROCEDURE" HSTPUT (A, X);

To insert a score in the appropriate cell of a histo-

gram the procedure

HSTPUT (A, X);

is called, where A is the name of the histogram array and X the value to

be inserted. Thus the statement
PUT

HSTSEL (EXAMPLE, 7);

will cause the count in cell 3 of the histogram EXAMPLE to be increased by

1, and the number of observations, sum of values and sum of squares to be

adjusted correspondingly.

10.4 "PROCEDURE" HSTPRINT (A, DEVOUT);

The contents of the cells of a histogram may be output

at any stage by calling the procedure

HSTPRINT (A, DEVOUT);

where A is the name of the histogram.

DEVOUT is an integer variable which determines the output device as follows:-

DEVOUT=1 output is on the punch

DEVOUT=3 output is on the teleprinter

The contents of each cell are identified and printed

on a new line followed by the proportion of values falling in each cell and the

cumulative proportion. Thus a call of

HSTPRINT (EXAMPLE, 3);

might produce the following output on the on-line teleprinter.

UNDER 4 . 11428571 . 11428571

1:3 7 . 20000000 . 31428571

4:6 12 . 34285714 . 65714286

7:9 9 . 25714286 . 91428571

10: 12 1 . 05714286 . 97142857

OVER 1 . 02857143 1. 0000000

21

(Issue 2)

900

2.6.3

10.5 "PROCEDURE" HSTTRUE (A, M, Vv);

The true or ungrouped mean and variance may be

obtained by using the procedure

HSTTRUE (A, M, V);

where A is the histogram array, and M and V the resulting mean and

variance. Mand V are of type real.

10.6 "PROCEDURE" HSTGROUP (A, M, V);

The grouped mean and variance may be obtained by

the procedure

HSTGROUP (A, M, V);

with A, M, V defined as in 10.5.

The formulae used are:-

M == Nat (u+iw). A [i] + 2(W-1)
i=0

w Nel
=-L+W-l)+— 2. iA [i]

2 isl
™

, | Nel 5 ,(N-1 2

ve—-4 >. (L+iw)”. A[i] -= (L+iw). A [i]
n-l} =o n {| iso)

we | Nel 2 1 \ Ne 2

-Wol SS 4 apiy-242 i. Ali]
n-l{ isi n / isl

where nis the total number of observations.

The formula for the mean assumes that the values

represented by a count in a cell, lie at the centre of that cell.

The formula for the variance gives an estimate of the

variance of the population from which the histogram has been drawn, rather

than the histogram itself.

If there are any counts in the ''UNDER" or "OVER"

cells then the mean and variance are undefined. The procedure then exits

with M = largest positive real number and Ve-l.

22
(Issue 2)

900
2.6.3

10.7 Arithmetic Operations

Simple arithmetic operations may be performed on

histograms provided that if more than one histogram is involved, they must

all have the same values of N, Land W.

There are three permitted operations viz addition,

subtraction and multiplication by a constant.

The available procedures are:-

HSTADD (A, B, C);

HSTSUB (A, B, C);
HSTMULT (A, K, C);

Thus if a, b, c, represent cells of A, B, C respectively,

then the results of the procedures are:

czatb

c=a-b where a 2b

c = Ka where K is a positive integer constant.

In the procedures B and C may both be equal to A or to

each other. A copy of a histogram may be made by calling HSTMULT with

Ke=l.

All the procedures check that the histograms are

compatible and that no negative counts are produced. In the event of either

of these occurring ESP will output an error message and stop.

10.8 "PROCEDURE" HSTIN (A);

Histograms may be input ready for use by the procedure

HSTIN (A);

where A is an array of sufficient size and with lower subscript bound - 7.

The input tape must contain N+8 numbers. The numbers representing the

number of observations, sum of values and sum of squares may all be in-

put as zero or else they must all be given values. In the former case the

missing quantities will be constructed from the remaining data, though the

actual sums of values and sums of squares will be replaced by grouped sums.

The number of observations, if given, is checked

against the sum of the cell counts.

10.9 "PROCEDURE" HSTOUT (A);

A histogram may be output in a form suitable for re-

input by HSTIN (A) by the procedure

HSTOUT (A);

The values are output in ascending order of subscript.

23

(Issue 2)

900

200.3

10.10 "INTEGER" "PROCEDURE" HSTSAMP (A, U);

A histogram may be used as a distribution and sampled

by using the integer procedure

HSTSAMP (A, U);

where U is a real variable used to hold a series of random numbers (ref. 7.1).

The result of this procedure is an integer X such that

the probability that X lies in any cell of the histogram is proportional to the

count in that cell. If the cell width exceeds unity, then all integer values

of X which would lie in the given cell are equally likely. If X lies in ''UNDER"

or "OVER"! then X will be given the value of the cell boundary. Thus in the

histogram EXAMPLE (ref. 10. 2) the value of X obtained from "UNDER" would

be 0 while 13 would be obtained from ''OVER".

24
(Issue 2)

Chapter 11; SUMMARY OF PROCEDURES

The following is a table of available procedures.

recommended to omit those not required when running the simulation

900

2.6. 3

The user is

program.

approx.

Procedure Type Remarks store

CALL (HAP, T); - These are part of

NEXT; "INTEGER"| the Housekeeping 750

PREPARE; - Section and must

always be included

BASERANDOM (VU); "INTEGER" The Random Num- 20

SETRANDOM; "REAL" ber Procedures

RANDOM (A, B, U); "INTEGER" 30
NEGEXP (MEAN, U); "REAL" 28

NORMAL (MEAN, SIGMA, U); "REAL" The 42

FASTNORMAL (MEAN, SIGMA, U); "REAL" Random 45

LOGNORMAL (MEAN, SIGMA, U); "REAL" Samolin 43

POISSON (MEAN, U); "INTEGER" Procedure ; 54
BINOMINAL (N, P, U); "INTEGER" 79

PASCAL (M, P, U); "INTEGER" 67

GEOMETRIC (P, U); "INTEGER" 54

ERLANG (A, K, U); "REAL" 52

HYPERGEOM (TN, NS, P, U); "INTEGER" 69

HSTSET (A, N, L, W); - 43
HSTPUT (A, X); - 87
HSTPRINT (A, DEVOUT); - 196

HSTTRUE (A, M, V); - 40
HSTGROUP (A, M, V); - The 129

HSTADD (A, B, C); ~ Histogram 14

HSTSUB (A, B, C); - Procedures 14

HSTIN (A); 7 183
HSTOUT (A); - 32
HSTSAMP (A, U); "INTEGER" 92

HSTMULT (A, K, C); - 75

25
(Issue 2)

900

2.6. 3

Note: (1)

(2)

(3)

(4)

(5)

26
(Issue 2)

If any of the Random Number or Sampling procedures are

used then the

"NINTEGER" 'PROCEDURE' XBASERANDOM (P, Q);

must be included.

If either of the procedures HSTADD or HSTSUB are used

then the

"PROCEDURE" HST WORKS (A, B, C, ADD);

must be included.

If the procedure HSTSAMP is used then the

"INTEGER" "PROCEDURE" RANDOM (A, B, U);

must be included.

The following procedures must always be present.

NINTEGER' ''PROCEDURE" STOREMAX;

'PROCEDURE" extract (first, first 1);
"PROCEDURE" insert (new, new 1);
"PROCEDURE" dopoint (i);
"PROCEDURE" close blocks;
"PROCEDURE" CALL (HAP, T);

"INTEGER" 'PROCEDURE" NEXT;

"PROCEDURE" INITIALISE (A, B, C);

"PROCEDURE" PREPARE;

The procedures STOREMAX, INITIALISE and XBASERANDOM

are SIR coded blocks.

900

2.6.3

Chapter 12: THE GLOBAL VARIABLE !TIME'

TIME is an integer global variable which holds a number

representing the current time within the simulation. It is set to zero by the

initialising procedure PREPARE and is adjusted as necessary by the pro-

cedure NEXT.

TIME is available to the user provided its value is not altered

by the user's program.

27

(Issue 2)

900
2.6.3

Chapter 13: OPERATING INSTRUCTIONS

ESP900 together with the user's program is run as an

ordinary 900 ALGOL program with SIR blocks.

ESP900 Tape 1 is a mnemonic ALGOL tape and contains all

the ESP900 procedures. However, three procedures are SIR blocks and

these are contained in SIR code form on ESP900 Tape 2.

The user is recommended to omit any procedures from the

package that are not required.

Note the following details:

(a) The user's program must not have a title.

(b) The user's program must end with two additional

"END'"'s.

(c) ESP maintains an

"INTEGER" "ARRAY" list [1 : max];

which holds details of the action calls. In general,

the simulation program will run more efficiently if

this list is made as large as possible.

At the start of the simulation run the message

ARRAY STORAGE AVAILABLE <I>

INPUT LIST SIZE

will be displayed on the on-line teleprinter. The

user should subtract the space required by his own

personal arrays from the integer I, and type the

resultant integer terminated by a non-numeric

character on the on-line teleprinter. This will

cause the list to be set up to its maximum size

for this particular simulation program.

If the user inputs 0 (zero), the array will be set up

to a standard size of 500 locations.

Note 1: Allow 1 word per element for integer

arrays and 2 words per element for real

arrays. Also allow an extra 3 + 2d words

for each array, where dis the number of

dimensions of the array.

Note 2: If an on-line teleprinter does not exist then

the message will be output on the punch and

the reply must be input via the reader.

28
(Issue 2)

900
2.6.3

(a) If the program is compiled such that checking

functions are compiled, then, in addition to any

checks the user may have written in his program,

each time the procedure NEXT is activated

current time and the number of the next delayed

action to be entered will be output on the current

output device in the form

*TIME

*5 70

xNE XT

*6

The conditional actions are treated as NEXT 0

for this purpose. The facility may be used to aid

'debugging' simulation programs.

13.1 Redundant procedures

It is very unlikely that the user will wish to use all the

simulation procedures on Tape 1 within his program. The following notes

on the layout of Tape 1 may assist the user to edit out the unwanted procedures.

Tape 1 starts with the title

ESP900 PROVISIONAL;

followed by a list of essential declarations, (including procedures) which

must not be omitted.

After the third halt code on the tape the random

number procedures occur, ending with line "REND" RANDOM;

The remaining procedures follow in order:

Fourth halt code

GEOMETRIC, LOGNORMAL, NEGEXP, NORMAL.

Halt code

FASTNORMAL, POISSON, BINOMIAL, PASCAL,

ERLANG, HYPERGEOM.

Halt code

HSTSET

Halt code

HSTPUT, HSTTRUE, HSTPRINT.

Halt code

HSTGROUP.

Halt code

HSTWORKS, HSTADD, HSTSUB, HSTMULT.

Halt code

29
(Issue 2)

900

2.6.3

HSTIN, HSTOUT

Halt code

HSTSAMP

All the procedures listed above end with a line of

the form

"END" NAME;

where NAME is the procedure name.

Example

In order to produce a tape which has the title SIM2

and contains everything except the procedures BINOMIAL to ERLANG and

HSTTRUE to HSTSUB the following edit could be used:

DC;

IL SIM2;

FL 'END'POISSON;

DL "END"'ERLANG;

FL "END" HSTPUT;

DL "END'HSTSUB;

FL 'END'HSTSAMP

SH

IH

©
The users simulation program could be edited onto

the same tape by following the SH with another SH or other suitable

command.

30

(Issue 2)

900
2.6.3

Chapter 14; ERROR MESSAGES

During the course of a simulation program errors may occur

in the use of ESP, in which case, a message will be displayed on the on-line

teleprinter and the program will stop. It is not possible to continue after

an error. If an on-line teleprinter is not fitted then the error messages are

output on the punch.

(a) ERRI

The array list 1: max is too small for the

simulation to continue. Should the user wish

to run the simulation further, the program size

must be reduced to make room for a larger list.

(b) ERR 2

There are no more action calls to be obeyed. The

simulation is presumed complete.

(c) ERR 3

A call of procedure CALL contains an illegal

parameter.

Either (i) HAP is less than 1.

or (ii) Tis less than 0.

or (iii) the simulation has lasted more than

131070 simulated time units.

or (iv) the number of parameters (set in

SEND [0]) is less than 0 or greater

than, 10.

(4) ERR 4

Histograms used by either HSTADD or HSTSUB

are incompatible.

(e) ERR5

Histograms used by HSTMULT are either in-

compatible or K, the multiplying constant, is

negative.

(f) ERR 6

Error during input of an histogram by HSTIN.

The calculated number of observations does not

agree with the non-zero value on the input tape.

31

(Issue 2)

900

2.6.3

Chapter 15: RESTRICTION

ESP imposes the restriction that the simulation experiment

may not last longer than 131071 simulated time units.

32

(Issue 2)

